Chem 210-Jasperse Test 3 Name:

Additional Aqueous Equilibria: Buffers, Titrations, Acid-Base-Buffer Mixtures, Solubility Thermodynamics: Entropy, Free Energy, Enthalpy, and Directionality of Chemical Reactions

Key Equations:

For weak acids alone in water:	For weak bases alone in water:
$[H^+] = \sqrt{K_a x [WA]}$	$[OH^-] = \sqrt{K_b x [WB]}$
pZ = -logZ	pH + pOH = 14
General definition for p of anything	
$[H^+][HO^-] = 1.00 \times 10^{-14}$	$K_aK_b=1.00 \times 10^{-14}$ for conjugate acid/base pair
For Buffer: $pH = pK_a + log[base]/[acid]$ Henderson-Hasselbalch Equation	$\Delta S^{\circ} = S^{\circ} \text{ (products)} - S^{\circ} \text{ (reactants)}$
$\Delta G^{\circ} = G^{\circ} \text{ (products)} - G^{\circ} \text{ (reactants)}$	$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} \qquad (T \text{ in Kelvin})$